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The Geometry of the Gauss Map

Throughout this chapter, S will denote a regular orientable surface in which an orientation (i.e.,
a differentiable field of unit normal vectors N) has been chosen; this will be simply called a
surface S with an orientation N.

Definition Let S ⊂ R3 be a surface with an orientation N. The map N : S → R3 takes its
values in the unit sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

The map N : S → S2, thus defined, is called the Gauss map of S.

It is straightforward to verify that the Gauss map is differentiable. Thus the differential dNp is
a linear map from TpS to TN(p)S

2. Since TpS and TN(p)S
2 are the same vector spaces, dNp can

be viewed as a linear map dNp : TpS → TpS from TpS to itself defined as follows.

For each parametrized curve α(t) in S with α(0) = p, we consider the parametrized curve
N ◦α(t) = N(t) in the sphere S2; thhis amounts to restricting the normal vector N to the curve
α(t). The tangent vector N ′(0) = dNp(α

′(0)) is a vector in TpS. It measures the rate of change
of the normal vector N, restricted to the curve α(t), at t = 0. Thus, dNp measures how N pulls
away from N(p) in a neighborhood of p. In the case of curves, this measure is given by a number,
the curvature. In the case of surfaces, this measure is characterized by a linear map.

Examples

1. Let S = {(x, y, z) ∈ R3 | ax + by + cz + d = 0} be a plane in R3. Then the unit normal
vector N = (a, b, c)/

√
a2 + b2 + c2 is a constant, and therefore dN ≡ 0, i.e. dNp(v) = 0v =

0 ∈ TN(p)S = TpS for all p ∈ S and all v ∈ TpS.
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2. Consider the unit sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

If α(t) = (x(t), y(t), z(t)) is a parametrized curve in S2, then

2x(t)x′(t) + 2y(t)y′(t) + 2z(t)z′(t) = 0 ⇐⇒ 〈α(t), α′(t)〉 = 0,

which shows that the vector (x, y, z) is normal to the sphere at the point (x, y, z). Thus,
N̄ = (x, y, z) and N = (−x,−y,−z) are fields of unit normal vectors in S2. Restricted to
the curve α(t), the normal vectors

N(t) = (−x(t),−y(t),−z(t)) =⇒ dN(x′(t), y′(t), z′(t)) = N ′(t) = (−x′(t),−y′(t),−z′(t)),
N̄(t) = (x(t), y(t), z(t)) =⇒ dN̄(x′(t), y′(t), z′(t)) = N̄ ′(t) = (x′(t), y′(t), z′(t))

that is, dNp(v) = −v and dN̄p(v) = v for all p ∈ S2 and all v ∈ TpS2.

3. Consider the cylinder S = {(x, y, z) ∈ R3 | x2 + y2 = 1}. By an argument similar to that
of the previous example, we see that N̄ = (x, y, 0) and N = (−x,−y, 0) are unit normal
vectors at (x, y, z). If (x(t), y(t), z(t)) is a parametrized curve in the cylinder, since

(x(t))2 + (y(t))2 = 1 =⇒ 2x(t)x′(t) + 2y(t)y′(t) = 0,

we are able to see that, along this curve,

N(t) = (−x(t),−y(t), 0) =⇒ dN(x′(t), y′(t), z′(t)) = N ′(t) = (−x′(t),−y′(t), 0).

This implies that if v is a vector tangent to the cylinder and parallel to the z axis and if w
is a vector tangent to the cylinder and parallel to the xy plane, then

dN(v) = 0 = 0v; dN(w) = −w.

It follows that v and w are eigenvectors of dN with eigenvalues 0 and −1, respectively.

4. Let us analyze the point p = (0, 0, 0) of the hyperbolic paraboloid z = y2 − x2. For this, we
consider a parametrization X(u, v) given by

X(u, v) = (u, v, v2 − u2),

and compute the normal vectorN(u, v). We obtain Xu = (1, 0,−2u), Xv = (0, 1, 2v) and

N = Xu ∧Xv =

 u√
u2 + v2 +

1

4

,
−v√

u2 + v2 +
1

4

,
1

2

√
u2 + v2 +

1

4

 .

If α(t) = X(u(t), v(t)) is a curve with α(0) = p then the tangent vector α′(0) has coordinates
(u′(0), v′(0), 0). Restricting N(u, v) to this curve and computing N ′(0), we obtain

N ′(0) = (2u′(0),−2v′(0), 0),

and therefore, at p,
dNp(u

′(0), v′(0), 0) = (2u′(0),−2v′(0), 0).

It follows that the vectors (1, 0, 0) and (0, 1, 0) are eigenvectors of dNp with eigenvalues 2
and −2, respectively.
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5. The method of the previous example, applied to the point p = (0, 0, 0) of the paraboloid
x = x2+ky2, k > 0, shows that the unit vectors of the x axis and the y axis are eigenvectors
of dNp, with eigenvalues 2 and 2k, respectively (assuming that N is pointing outwards from
the region bounded by the paraboloid).

Proposition The differential dNp : TpS → TpS of the Gauss map is a self-adjoint linear map.

Proof Since dNp : TpS → TpS is linear, it suffices to verify that

〈dNp(w1), w2〉 = 〈w1, dNp(w2)〉 for a basis {w1, w2} of TpS.

Let X(u, v) be a parametrization of S at p and {Xu, Xv} the associated basis of TpS. If α(t) =
X(u(t), v(t)) is a parametrized curve in S, with α(0) = p, we have

dNp(α
′(0)) = dNp(Xuu

′(0) +Xvv
′(0))

=
d

dt
N(u(t), v(t))|t=0

= Nuu
′(0) +Nvv

′(0);

in particular, dNp(Xu) = Nu and dNp(Xv) = Nv. Therefore, to prove that dNp : TpS → TpS is
self-adjoint, it suffices to show that

〈Nu, Xv〉 = 〈dNp(Xu), Xv〉 = 〈Xu, dNp(Xv)〉 = 〈Xu, Nv〉.

Differentiating the equations 〈N,Xu〉 = 0 and 〈N,Xv〉 = 0 with respect to v and u, respectively,
we get

〈Nv, Xu〉+ 〈N,Xuv〉 = 0 =⇒ 〈Nv, Xu〉 = −〈N,Xuv〉
〈Nu, Xv〉+ 〈N,Xvu〉 = 0 =⇒ 〈Nu, Xv〉 = −〈N,Xvu〉

=⇒ 〈Nv, Xu〉 = −〈N,Xuv〉 = 〈Nu, Xv〉.

This proves that dNp : TpS → TpS is a self-adjoint linear map.

Remark Let V be a vector space of dimension 2, endowed with an inner product 〈 , 〉. We say
that a linear map A : V → V is self-adjoint if 〈Av,w〉 = 〈v, Aw〉 for all v, w ∈ V.
If {e1, e2} is an orthonormal basis for V and (αij), i, j = 1, 2, is the matrix of A relative to that
basis, then

〈Aej, ei〉 = αij = 〈ej, Aei〉 = αji,

that is, the matrix (αij) is symmetric.

To each self-adjoint linear map we associate a map B : V × V → R defined by

B(v, w) = 〈Av,w〉 ∀ v, w ∈ V.

B is clearly bilinear; that is, it is linear in both v and w. Moreover, the fact that A is self-adjoint
implies that B(v, w) = B(w, v); that is, B is a bilinear symmetric form in V.

Conversely, if B is a bilinear symmetric form in V, we can define a linear map A : V → V by
〈Av,w〉 = B(v, w) and the symmetry of B implies that A is self-adjoint.

On the other hand, to each symmetric, bilinear form B in V, there corresponds a quadratic form
Q in V given by

Q(v) = B(v, v), v ∈ V,
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and the knowledge of Q determines B completely, since

B(v, w) =
1

2
[Q(v + w)−Q(v)−Q(w)] .

Thus, a one-to-one correspondence is established between quadratic forms in V and self-adjoint
linear maps of V.

The fact that dNp : TpS → TpS is a self-adjoint linear map allows us to associate to dNp a
quadratic form in TpS defined as follows.

Definition The quadratic form IIp : TpS → R, defined by

IIp(v) = −〈dNp(v), v〉, v ∈ TpS,

is called the second fundamental form of S at p.

Definition Let C be a regular curve in S passing through p ∈ S, k the curvature of C at p, and
cos θ = 〈n,N〉, where n is the normal vector to C and N is the normal vector to S at p. The
number kn = k cos θ is then called the normal curvature of C ⊂ S at p.

In other words, kn is the length of the projection of the vector kn over the normal to the surface
at p, with a sign given by the orientation N of S at p.

Remarks

• The normal curvature of C does not depend on the orientation of C but changes sign with
a change of orientation for the surface.

• Let v ∈ TpS be a unit tangent vector to S at p, and let C ⊂ S be a regular curve parametrized
by α(s) : I → S, where s is the arc length of C, and with α(0) = p, α′(0) = v. Let
N(s) = N ◦ α(s) be the restriction of the normal vector N to the curve α(s). For all s ∈ I,
since

〈N(s), α′(s)〉 = 0 =⇒ 〈N ′(s), α′(s)〉+〈N(s), α′′(s)〉 = 0 =⇒ −〈N ′(s), α′(s)〉 = 〈N(s), α′′(s)〉,

we have

IIp(α
′(0)) = −〈dNp(α

′(0)), α′(0)〉 = −〈dNp(−α′(0)),−α′(0)〉 = IIp(−α′(0))

= −〈N ′(0), α′(0)〉 = 〈N(0), α′′(0)〉

= 〈N(p), kn(p)〉(∗)= kn(p) =⇒ kn(p) depends only on v = α′(0) and IIp
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that is, the value of the second fundamental form IIp for a unit vector v ∈ TpS is equal to
the normal curvature of a regular curve passing through p and tangent to v. In particular,
we obtained the following result.

Proposition (Meusnier) All curves lying on a surface S and having at a given point p ∈ S
the same tangent line have at this point the same normal curvatures.

Remark Given a unit vector v ∈ TpS, the intersection of S with the plane containing v and
N(p) is called the normal section of S at p along v. In a neighborhood of p, a normal section of
S at p is a regular plane curve on S whose normal vector

n(p) = ±N(p) or 0 (a zero vector when k = 0);

and, by (∗), k(p) = |kn(p)|. With this terminology, the above proposition says that the absolute
value of the normal curvature at p of a curve α(s) is equal to the curvature of the normal section
of S at p along α′(0).

Examples

1. Let S be the surface of revolution obtained by rotating the curve z = y4, parametrized by
α(t) = (0, t, t4), t ∈ R, about the z axis and let p = α(0) = (0, 0, 0) ∈ S. Since

• k(p) =
|α′(0)× α′′(0)|
|α′(0)|3

= 0,

• TpS = {(x, y, 0) | (x, y) ∈ R2}, the xy plane,

=⇒ N(p) // (0, 0, 1), i.e. the normal vector N(p) is parallel to the z axis,

and any normal section at p is obtained from the curve z = y4 by rotation; hence, it has
curvature zero. It follows that all normal curvatures are zero at p, and thus dNp = 0.

2. • Let S = {(x, y, z) ∈ R3 | ax+by+cz+d = 0} be a plane in R3. Since all normal sections
are straight lines, all normal curvatures are zero. Thus, the second fundamental form
is identically zero at all points. This agrees with the fact that dNp = 0 for all p ∈ S.
• Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} with N as orientation, the normal sections

through a point p ∈ S2 are circles with radius 1. Thus, all normal curvatures are equal
to 1, and the second fundamental form is IIp(v) = 1 for all p ∈ S2 and all v ∈ TpS2

with |v| = 1.
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• Let S = {(x, y, z) ∈ R3 | x2 + y2 = 1} be a cylinder in R3. Since the normal sections
at a point p vary from a circle perpendicular to the axis of the cylinder to a straight
line parallel to the axis of the cylinder, passing through a family of ellipses, the normal
curvatures varies from 1 to 0. It is not hard to see geometrically that 1 is the maximum
and 0 is the minimum of the normal curvature at p.

Lemma If the function Q(x, y) = ax2 + 2bxy+ cy2, restricted to the unit circle x2 + y2 = 1, has
a maximum at the point (1, 0), then b = 0.

Proof Parametrize the circl x2 + y2 = 1 by x = cos t, y = sin t, t ∈ (−ε, 2π + ε). Thus, t = 0 is
an interior point of (−ε, 2π + ε), and Q, restricted to that circle, becomes a function of t:

Q(t) = a cos2 t+ 2b cos t sin t+ c sin2 t, t ∈ (−ε, 2π + ε).

Since Q has a maximum at the interior point (1, 0) we have(
dQ

dt

)
t=0

= 2b = 0.

Hence, b = 0 as we wished.

Proposition Given a quadratic form Q in V, there exists an orthonormal basis {e1, e2} of V
such that if v ∈ V is given by v = xe1 + ye2, then

Q(v) = λ1x
2 + λ2y

2,

where λ1 and λ2 are the maximum and minimum, repectively, of Q on the unit circle |v| = 1.

Proof Let λ1 be the maximum of Q on the unit circle |v| = 1, and let e1 be a unit vector with
max
|v|=1

Q(v) = Q(e1) = λ1. Such an e1 exists by continuity of Q on the compact set |v| = 1. Let

e2 be a unit vector that is orthogonal to e1, and set λ2 = Q(e2). We shall show that the basis
{e1, e2} satisfies the conditions of the proposition.

Let B be the symmetric bilinear form that is associated to Q and set v = xe1 + ye2. Then

Q(v) = B(v, v) = B(xe1 + ye2, xe1 + ye2) = λ1x
2 + 2bxy + λ2y

2, where b = B(e1, e2).

By the lemma, b = B(e1, e2) = 0, and thus Q(v) = λ1x
2 + λ2y

2, for v = xe1 + ye2 ∈ V.
Furthermore, for any v = xe1 + ye2 with x2 + y2 = 1, since λ1 = max

|v|=1
Q(v) ≥ Q(e2) = λ2,

Q(v) = λ1x
2 + λ2y

2 ≥ λ2(x
2 + y2) = λ2 = Q(e2) =⇒ λ2 = min

|v|=1
Q(v).

Since

Theorem Let A : V → V be a self-adjoint linear map. Then there exists an orthonormal basis
{e1, e2} of V such that A(e1) = λ1e1, A(e2) = λ2e2 (that is, e1 and e2 are eigenvectors and
λ1, λ2 are eigenvalues of A). In the basis {e1, e2}, the matrix of A is clearly diagonal and the
elements λ1, λ2, λ1 ≥ λ2, on the diagonal are the maximum and the minimum, respectively, of
the quadratic form Q(v) = 〈Av, v〉, on the unit circle of V.

Proof Consider the quadratic form Q(v) = 〈Av, v〉. By proposition above, there exists an or-
thonormal basis {e1, e2} of V such that

Q(e1) = λ1 = max
|v|=1|

Q(v) ≥ min
|v|=1|

Q(v) = λ2 = Q(e2).
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By setting Ae1 = α11e1 + α21e2 and Ae2 = α12e1 + α22e2, since

α11 = 〈Ae1, e1〉 = Q(e1) = λ1 and α21 = 〈Ae1, e2〉 = B(e1, e2) = 0 =⇒ Ae1 = λ1e1,

and since

α12 = 〈Ae2, e1〉 = B(e2, e1) = 0 and α22 = 〈Ae2, e2〉 = Q(e2) = λ2 =⇒ Ae2 = λ2e2,

and in the basis {e1, e2}, the matrix of A is

(
λ1 0
0 λ2

)
.

Remark For each p ∈ S there exists an orthonormal basis {e1, e2} of TpS such that

dNp(e1) = −k1e1 and dNp(e2) = −k2e2, where k1 = max
v∈TpS, |v|=1

IIp(v) and k2 = min
v∈TpS, |v|=1

IIp(v).

Definition The maximum normal curvature k1 and the minimum normal curvature k2 are called
the principal curvatures at p; the corresponding directions, that is, the directions given by the
eigenvectors e1, e2, are called principal directions at p.

Definition If a regular connected curve C on S is such that for all p ∈ C the tangent line of C
is a principal direction at p, then C is called a line of curvature of S.

Proposition (Olinde Rodrigues) A necessary and sufficient condition for a connected regular
curve C on S to be a line of curvature of S is that

N ′(t) = λ(t)α′(t),

for any parametrization α(t) of C, where N(t) = N ◦ α(t) and λ(t) is a differentiable function of
t. In this case, −λ(t) is the (principal) curvature along α′(t).

Proof It suffices to observe that if α′(t) is contained in a principal direction, then α′(t) is an
eigenvector of dN and

N ′(t) = dN(α′(t)) = λ(t)α′(t).

The converse is immediate (since dN(α′(t)) = N ′(t) = λ(t)α′(t)).

Remark For p ∈ S, let {e1, e2} be the principal directions at p such that

dNp(e1) = −k1e1 and dNp(e2) = −k2e2,

where k1 = max
v∈TpS, |v|=1

IIp(v), k2 = min
v∈TpS, |v|=1

IIp(v) are the principal curvatures at p. For each

unit vector v ∈ TpS, since {e1, e2} forms an orthonormal basis of TpS, we have

v = e1 cos θ + e2 sin θ,

where θ is the angle from e1 to v in the orientation of TpS. The normal curvature kn along v is
given by

kn = IIp(v) = −〈dNp(v), v〉
= −〈dNp(e1 cos θ + e2 sin θ), e1 cos θ + e2 sin θ〉
= 〈e1k1 cos θ + e2k2 sin θ, e1 cos θ + e2 sin θ〉
= k1 cos2 θ + k2 sin2 θ.

The last expression is known classically as the Euler formula; actually, it is just the expression
of the second fundamental form in the basis {e1, e2}.
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Given a linear map A : V → V of a vector space of dimension 2 and given a basis {v1, v2} of V,
we recall that

determinant of A = a11a22 − a12a22, trace of A =
a11 + a22

2
,

where (aij) is the matrix of A in the basis {v1, v2}. It is known that these numbers do not depend
on the choice of the basis {v1, v2} and are, therefore, attached to the linear map A.

Definition Let p ∈ S and let dNp : TpS → TpS be the differential of the Gauss map. Then the
determinant of dNp is called the Gaussian curvature K of S at p, and the negative of half of the
trace of dNp is called the mean curvature H of S at p.

In terms of the principal curvatures we can write

K = det dNp =

∣∣∣∣−k1 0
0 −k2

∣∣∣∣ = det(−dNp) = k1k2, H = tr (−dNp) = tr

(
k1 0
0 k2

)
=
k1 + k2

2
.

Definition A point p of a surface S is called

1. elliptic if det dNp > 0, e.g. points of a sphere (x − a)2 + (y − b)2 + (z − c)2 = r2 and the
point p = (0, 0, 0) of the paraboloid z = x2 + ky2, k > 0.

2. hyperbolic if det dNp < 0, e.g. the point p = (0, 0, 0) of the hyperbolic paraboloid z = y2−x2.
3. parabolic if det dNp = 0, with dNp 6= 0, e.g. points of a cylinder (x− a)2 + (y − b)2 = r2.

4. planar if dNp = 0, e.g. points of a plane ax+ by + cz + d = 0.

It is clear that this classification does not depend on the choice of the orientation.

Definition A point p ∈ S is called an umbilical point of S if k1 = k2.

Observe that all points of a plane (k1 = k2 = 0) are (planar) umbilical points, and all points

of a sphere of radius r (k1 = k2 =
1

r
) or the point p = (0, 0, 0) of the paraboloid z = x2 + y2

(k1 = k2 = 2) are (nonplanar) umbilical points.

It is an interesting fact that the only surfaces made up entirely of umbilical points are essentially
spheres and planes.

Proposition If all points of a connected surface S are umbilical points, then S is either contained
in a sphere or in a plane.

Proof Let p ∈ S and let X(u, v) be a parametrization of S at p such that the coordinate
V = X(U) ⊂ S is connected. Since each q ∈ V is an umbilical point, there exists a differentiable
function λ : V → R such that

dNq(w) = λ(q)w ∀ q ∈ V, ∀w = a1Xu + a2Xv ∈ TqS
⇐⇒ Nua1 +Nva2 = λ(q)(a1Xu + a2Xv) ∀ a1, a2 ∈ R
=⇒ Nu = λ(q)Xu and Nv = λ(q)Xv.

Differentiating the first equation in v and the second one in u and subtracting the resulting
equations, we obtain

λv(q)Xu − λu(q)Xv = 0.

Since Xu and Xv are linearly independent, we have

λu(q) = λv(q) = 0 ∀ q ∈ V.
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Also since V is connected, λ(q) = λ (a constant) for all q ∈ V = X(U) ⊂ S.

If λ = 0, then Nu(q) = Nv(q) = 0 for all q ∈ V and therefore N(q) = N0 (a constant vector) for
all q ∈ V. Thus

〈X(u, v), N0〉u = 〈X(u, v), N0〉v = 0 ∀ (u, v) ∈ U.

Since U ⊂ R2 is connected, we have

〈X(u, v), N0〉 = d (a constant) ∀ (u, v) ∈ U

and all points X(u, v) of V belong to a plane.

If λ 6= 0, since Nu = λXu, Nv = λXv, we have(
X(u, v)− 1

λ
N(u, v)

)
u

=

(
X(u, v)− 1

λ
N(u, v)

)
v

= 0 ∀ (u, v) ∈ U.

Thus there exists a fixed point Y ∈ R3 such that

X(u, v)− 1

λ
N(u, v) = Y ∀ (u, v) ∈ U =⇒ |(X(u, v)− Y |2 =

1

λ2
|N |2 =

1

λ2
∀ (u, v) ∈ U.

Hence all points of V = X(U) are contained in a sphere of center Y and radius
1

|λ|
.

Furthermore, observe that if V = X(U) and W = X̄(Ū) are connected coordinate neighborhoods
of p = X(u0, v0) = X̄(ū0, v̄0) ∈ S, then V = X(U) and W = X̄(Ū) are contained in the same
plane or in the same sphere by the continuity. This proves that if all points of a connected surface
S are umbilical points, then S is either contained in a sphere or in a plane.

The Gauss Map in Local Coordinates

Let X(u, v) be a parametrization at a point p ∈ S of a surface S, and let α(t) = X(u(t), v(t)) be a
parametrized curve on S, with α(0) = p. To simplify the notation, we shall make the convention
that all functions to appear below denote their values at the point p.

The tangent vector to α(t) at p α′ = Xuu
′ +Xvv

′ and

dN(α′) =
d

dt
N(u(t), v(t)) = Nuu

′ +Nvv
′.

Since N =
Xu ∧Xv

|Xu ∧Xv|
, Nu, Nv ∈ TpS, in basis {Xu, Xv} we may write

(∗)

{
Nu = a11Xu + a21Xv,

Nv = a12Xu + a22Xv,

and therefore,
dN(α′) = (a11u

′ + a12v
′)Xu + (a21u

′ + a22v
′)Xv;

hence,

dN

(
u′

v′

)
=

(
a11 a12
a21 a22

) (
u′

v′

)
.

This shows that in the basis {Xu, Xv}, dN is given by the matrix (aij), i, j = 1, 2. Notice that
this matrix is not necessarily symmetric, unless {Xu, Xv} is an orthonormal basis.
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On the other hand, the expression of the second fundamental form in the basis {Xu, Xv}is given
by

IIp(α
′) = −〈dN(α′), α′〉 = −〈Nuu

′ +Nvv
′, Xuu

′ +Xvv
′〉

= e(u′)2 + 2fu′v′ + g(v′)2,

where, since 〈N,Xu〉 = 〈N,Xv〉 = 0,

e = −〈Nu, Xu〉 = 〈N,Xuu〉,
f = −〈Nv, Xu〉 = 〈N,Xuv〉 = 〈N,Xvu〉 = −〈Nu, Xv〉,
g = −〈Nv, Xv〉 = 〈N,Xvv〉.

We shall now obtain the values of aij in terms of the coefficients e, f, g. We shall now obtain the
values of aij in terms of the coefficients e, f, g. From equations (∗) for Nu, Nv, we have

−f = −〈Nu, Xv〉 = a11F + a21G,

−f = −〈Nv, Xu〉 = a12E + a22G,

−e = −〈Nu, Xu〉 = a11E + a21F,

−g = −〈Nv, Xv〉 = a12F + a22G.

where E,F and G are the coefficients of the first fundamental form in the basis {Xu, Xv}. In
matrix form, we have

−
(
e f
f g

)
=

(
a11 a21
a12 a22

) (
E F
F G

)
⇐⇒

(
a11 a21
a12 a22

)
= −

(
e f
f g

) (
E F
F G

)−1
(†),

and thus(
a11 a21
a12 a22

)
=

−1

EG− F 2

(
e f
f g

) (
G −F
−F E

)
=

−1

EG− F 2

(
eG− fF −eF + fE
fG− gF −fF + gE

)
.

Note that the Equations (∗), with (aij) defined in (†), are nonlinear partial differential equations
of 2nd order for X = X(u, v), called the equations of Weingarten.

From Eq. (†), we immediately obtain the Gaussian curvature

K(p) = det(−dNp) = det(aij) =
eg − f 2

EG− F 2
.

To compute the mean curvature, we recall that −k1, −k2 are the eigenvalues of dN Therefore,
k1 and k2 satisfy the equation

dN(v) = −kv = −kIv for some v ∈ TpS, v 6= 0,

where I is the identity map. It follows that the linear map dN + kI is not invertible; hence, it
has zero determinant. Thus,

det

(
a11 + k a12
a21 a22 + k

)
= 0 ⇐⇒ k2 + (a11 + a22)k + (a11a22 − a12a21) = 0.

Since k1 and k2 are the roots of the above quadratic equation, we conclude that

H =
1

2
(k1 + k2) = −1

2
(a11 + a22) =

1

2

eG− 2fF + gE

EG− F 2
;
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hence,

k2 − 2Hk +K = 0 ⇐⇒ k = H ±
√
H2 −K.

From this relation, it follows that if we choose k1(q) ≥ k2(q), q ∈ S, then the functions k1 and k2
are continuous in S. Moreover, k1 and k2 are differentiable in S, except perhaps at the umbilical
points (H2 = K) of S.

Examples

1. Let U be an open subset of R2 and let S be the graph of a differentiable function z = h(x, y),
(x, y) ∈ U. Then S is parametrized by

X(x, y) = (x, y, h(x, y)), (x, y) ∈ U.

A simple computation shows that

K =
hxxhyy − h2xy

(1 + h2x + h2y)
2
, 2H =

(1 + h2x)hyy − 2hxhyhxy + (1 + h2y)hxx

(1 + h2x + h2y)
3/2

.

2. Consider a surface of revolution parametrized by

X(u, v) = (ϕ(v) cosu, ϕ(v) sinu, ψ(v)) 0 < u < 2π, a < v < b, ϕ(v) 6= 0.

The coefficients of the first fundamental form are given by

E = ϕ2, F = 0, G = (ϕ′)2 + (ψ′)2.

It is convenient to assume that the rotating curve is parametrized by arc length, that is,
that

(ϕ′)2 + (ψ′)2 = G = 1.

The computation of the coefficients of the second fundamental form is straightforward and
yields

e =
(Xu, Xv, Xuu)√

EG− F 2
=

1√
EG− F 2

∣∣∣∣∣∣
−ϕ sinu ϕ cosu 0
ϕ′ cosu ϕ′ sinu ψ′

−ϕ cosu −ϕ sinu 0

∣∣∣∣∣∣ = −ϕψ′

f =
(Xu, Xv, Xuv)√

EG− F 2
=

1√
EG− F 2

∣∣∣∣∣∣
−ϕ sinu ϕ cosu 0
ϕ′ cosu ϕ′ sinu ψ′

−ϕ′ sinu ϕ′ cosu 0

∣∣∣∣∣∣ = 0

g =
(Xu, Xv, Xvv)√

EG− F 2
=

1√
EG− F 2

∣∣∣∣∣∣
−ϕ sinu ϕ cosu 0
ϕ′ cosu ϕ′ sinu ψ′

ϕ′′ cosu ϕ′′ sinu ψ′′

∣∣∣∣∣∣ = ψ′ϕ′′ − ψ′′ϕ′

Since F = f = 0, we conclude that the parallels (v =const.) and the meridians (u =const.)
of a surface of revolution are lines of curvature of such a surface.

Because

K =
eg − f 2

EG− F 2
= −ψ

′(ψ′ϕ′′ − ψ′′ϕ′)
ϕ

and ϕ is always positive, it follows that the parabolic points are given by either ψ′ = 0 (the
tangent line to the generator curve is perpendicular to the axis of rotation) or ψ′ϕ′′−ψ′′ϕ′ = 0
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(the curvature of the generator curve is zero). A point which satisfies both conditions is a
planar point, since these conditions imply that e = f = g = 0.

It is convenient to put the Gaussian curvature in still another form. By differentiating
(ϕ′)2 + (ψ′)2 = 1 we obtain ϕ′ϕ′′ = −ψ′ψ′′. Thus

K = −ψ
′(ψ′ϕ′′ − ψ′′ϕ′)

ϕ
= −(ψ′)2ϕ′′ + (ϕ′)2ϕ′′

ϕ
= −ϕ

′′

ϕ
.

3. Let a > r > 0, and consider the parametrization

X(u, v) = ((r cosu+ a) cos v, (r cosu+ a) sin v, r sinu) , 0 < u < 2π, 0 < v < 2π

of the torus generated by rotating S1 = {(y, z) | (y − a)2 + z2 = r2} about z-axis. Since

Xu = (−r sinu cos v,−r sinu sin v, r cosu) ,

Xv = (−(r cosu+ a) sin v, (r cosu+ a) cos v, 0) ,

Xuu = (−r cosu cos v,−r cosu sin v,−r sinu) ,

Xuv = (r sinu sin v,−r sinu cos v, 0) ,

Xvv = (−(r cosu+ a) cos v,−(r cosu+ a) sin v, 0) ,

we obtainXu∧Xv = (−r cosu (r cosu+ a) cos v,−r cosu (r cosu+ a) sin v,−r sinu (r cosu+ a)) ,

E = 〈Xu, Xu〉 = r2, F = 〈Xu, Xv〉 = 0, G = 〈Xv, Xv〉 = (r cosu+ a)2,

|Xu ∧Xv| =
√
EG− F 2 = r(r cosu+ a), and

e = 〈N,Xuu〉 = 〈 Xu ∧Xv

|xu ∧Xv|
, Xuu〉 =

〈Xu ∧Xv, Xuu〉√
EG− F 2

=
r2(r cosu+ a)

r(r cosu+ a)
= r,

f = 〈N,Xuv〉 = 〈 Xu ∧Xv

|xu ∧Xv|
, Xuv〉 =

〈Xu ∧Xv, Xuv〉√
EG− F 2

= 0,

g = 〈N,Xvv〉 = 〈 Xu ∧Xv

|xu ∧Xv|
, Xvv〉 =

〈Xu ∧Xv, Xvv〉√
EG− F 2

=
r cosu (r cosu+ a)2

r(r cosu+ a)
= cosu(r cosu+ a),

and K =
eg − f 2

EG− F 2
=

cosu

r(r cosu+ a)
. Note that K = 0 when u = π/2 or u = 3π/2, the

points of such parallels are parabolic points; K < 0 when π/2 < u < 3π/2, the points in
this region are hyperbolic points; and K > 0 when 0 < u < π/2, or 3π/2 < u < 2π, the
points in this region are elliptic points.
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Proposition Let p ∈ S be an elliptic point of a surface S. Then there exists a neighborhood V
of p in S such that all points in V belong to the same side of the tangent plane TpS. Let p ∈ S
be a hyperbolic point. Then in each neighborhood of p there exist points of S in both sides of
TpS.

Proof Let X(u, v) be a parametrization of S at p, with X(0, 0) = p, and let d : X(U)→ R be a
function defined by

d(q) = 〈X(u, v)−X(0, 0), N(p)〉, for q = X(u, v) ∈ X(U).

Since X(u, v) is differentiable and by the Taylor’s formula, we have

X(u, v) = X(0, 0) +Xu(0, 0)u+Xv(0, 0)v +
1

2
(Xuu(0, 0)u2 + 2Xuv(0, 0)uv +Xvv(0, 0)v2) + R̄,

where the remainder R̄ satisfies that

lim
(u,v)→(0,0)

R̄

u2 + v2
= 0.

It follows that 〈Xu(0, 0), N(p)〉 = 〈Xv(0, 0), N(p)〉 = 0 and

d(q) = 〈X(u, v)−X(0, 0), N(p)〉

=
1

2

{
〈Xuu(0, 0), N(p)〉u2 + 2〈Xuv(0, 0), N(p)〉uv + 〈Xvv(0, 0), N(p)〉v2

}
+ 〈R̄, N(p)〉

=
1

2

{
eu2 + 2fuv + gv2

}
+ 〈R̄, N(p)〉

=
1

2
IIp(w) + 〈R̄, N(p)〉,

where w = Xu(0, 0)u+Xv(0, 0)v ∈ TpS and lim
(u,v)→(0,0)

〈R̄, N(p)〉
u2 + v2

= 0.

For an elliptic point p, K(p) > 0, so the principal curvatures k1, k2 have the same sign and thus
IIp(w) = kn has a fixed sign for all w ∈ TpS satisfying |w| = 1 (by the Euler formula). Therefore,
for all (u, v) sufficiently near p, d has the same sign as IIp(w); that is, all such (u, v) belong to
the same side of TpS.

For a hyperbolic point p, K(p) < 0, so the principal curvatures k1, k2 have the opposite signs,
and in each neighborhood of p there exist points (u, v) and (ū, v̄) such that IIp(w/|w|) = k1
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and IIp(w̄/|w̄|) = k2 have opposite signs (here w = Xu(0, 0)u + Xv(0, 0)v and w̄ = Xu(0, 0)ū +
Xv(0, 0)v̄ are principal directions); such points belong therefore to distinct sides of TpS.

Proposition Let p be a point of a surface S such that the Gaussian curvature K(p) 6= 0, and
let V be a connected neighborhood of p where K does not change sign. Then

K(p) = lim
A→0

A′

A
,

where

• A is the area of a a region B ⊂ V containing p,

• A′ is the area of the region N(B) in S2,

and the limit is taken through a sequence of regions Bn that converges to p, in the sense that
any sphere around p conatins all Bn, for n sufficiently large.

Proof Suppose K > 0 in V. Let X : U → S be a parametrization of S at p such that V ⊂ X(U)
and let B = X(R). Since

A =

∫∫
R

|Xu ∧Xv| du dv, and A′ =

∫∫
R

|Nu ∧Nv| du dv =

∫∫
R

K|Xu ∧Xv| du dv,

we have

lim
A→0

A′

A
= lim

A→0

A′/A(R)

A/A(R)
=

lim
A(R)→0

1

A(R)

∫∫
R

K|Xu ∧Xv| du dv

lim
A(R)→0

1

A(R)

∫∫
R

|Xu ∧Xv| du dv
=
K|Xu ∧Xv|
|xu ∧Xv|

= K(p).

Remark In the proof, we have used the following Theorems from Advanced Calculus.

• Change of Variables Theorem Let F : U → V be a diffeomorphism between open
subsets of U, V ⊂ Rn, let D∗ ⊂ U and D = F (D∗) ⊂ V be bounded subsets, and let
f : D → R be a bounded function. Then∫

D

f(y1, . . . , yn) dy1 · · · dyn =

∫
D∗
f(F (x1, . . . , xn)) | detDF (x1, . . . , xn)| dx1 · · · dxn

=

∫
D∗
f(F (x1, . . . , xn))

∣∣∣∣ ∂(y1, . . . , yn)

∂(x1, . . . , xn)

∣∣∣∣ dx1 · · · dxn.
• Theorem Let f : Br(p)→ R be a function defined on the ball Br(p) ⊂ Rn of radius r and

center p. If f is continuous at p, then

lim
ρ→0

1

V (Bρ(p))

∫
Bρ(p)

f(x) dx = f(p), where V (Bρ(p)) =

∫
Bρ(p)

dx = the volume of Bρ(p).

Proof Since

f(p) = f(p) · 1

V (Bρ(p))

∫
Bρ(p)

dx =
1

V (Bρ(p))

∫
Bρ(p)

f(p) dx and lim
x→p

f(x) = f(p),
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we have for any ε > 0, there is a δ > 0 such that if x ∈ Bδ(p) then |f(x)− f(p)| < ε, so for
all 0 < ρ < δ, we have∣∣∣∣∣limρ→0

1

V (Bρ(p))

∫
Bρ(p)

f(x) dx− f(p)

∣∣∣∣∣ =

∣∣∣∣∣limρ→0

1

V (Bρ(p))

∫
Bρ(p)

[f(x)− f(p)] dx

∣∣∣∣∣
≤ lim

ρ→0

1

V (Bρ(p))

∫
Bρ(p)

|f(x)− f(p)| dx

< lim
ρ→0

1

V (Bρ(p))

∫
Bρ(p)

ε dx

= ε.

Since ε > 0 is arbitrary, we have

lim
ρ→0

1

V (Bρ(p))

∫
Bρ(p)

f(x) dx = f(p).
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