The Geometry of the Gauss Map

Throughout this chapter, S will denote a regular orientable surface in which an orientation (i.e., a differentiable field of unit normal vectors N) has been chosen; this will be simply called a surface S with an orientation N.
Definition Let $S \subset \mathbb{R}^{3}$ be a surface with an orientation N. The map $N: S \rightarrow \mathbb{R}^{3}$ takes its values in the unit sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

The map $N: S \rightarrow S^{2}$, thus defined, is called the Gauss map of S.

It is straightforward to verify that the Gauss map is differentiable. Thus the differential $d N_{p}$ is a linear map from $T_{p} S$ to $T_{N(p)} S^{2}$. Since $T_{p} S$ and $T_{N(p)} S^{2}$ are the same vector spaces, $d N_{p}$ can be viewed as a linear map $d N_{p}: T_{p} S \rightarrow T_{p} S$ from $T_{p} S$ to itself defined as follows.
For each parametrized curve $\alpha(t)$ in S with $\alpha(0)=p$, we consider the parametrized curve $N \circ \alpha(t)=N(t)$ in the sphere S^{2}; thhis amounts to restricting the normal vector N to the curve $\alpha(t)$. The tangent vector $N^{\prime}(0)=d N_{p}\left(\alpha^{\prime}(0)\right)$ is a vector in $T_{p} S$. It measures the rate of change of the normal vector N, restricted to the curve $\alpha(t)$, at $t=0$. Thus, $d N_{p}$ measures how N pulls away from $N(p)$ in a neighborhood of p. In the case of curves, this measure is given by a number, the curvature. In the case of surfaces, this measure is characterized by a linear map.

Examples

1. Let $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a x+b y+c z+d=0\right\}$ be a plane in \mathbb{R}^{3}. Then the unit normal vector $N=(a, b, c) / \sqrt{a^{2}+b^{2}+c^{2}}$ is a constant, and therefore $d N \equiv 0$, i.e. $d N_{p}(v)=0 v=$ $0 \in T_{N(p)} S=T_{p} S$ for all $p \in S$ and all $v \in T_{p} S$.
2. Consider the unit sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} .
$$

If $\alpha(t)=(x(t), y(t), z(t))$ is a parametrized curve in S^{2}, then

$$
2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)+2 z(t) z^{\prime}(t)=0 \Longleftrightarrow\left\langle\alpha(t), \alpha^{\prime}(t)\right\rangle=0,
$$

which shows that the vector (x, y, z) is normal to the sphere at the point (x, y, z). Thus, $\bar{N}=(x, y, z)$ and $N=(-x,-y,-z)$ are fields of unit normal vectors in S^{2}. Restricted to the curve $\alpha(t)$, the normal vectors
$N(t)=(-x(t),-y(t),-z(t)) \Longrightarrow d N\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)=N^{\prime}(t)=\left(-x^{\prime}(t),-y^{\prime}(t),-z^{\prime}(t)\right)$,
$\bar{N}(t)=(x(t), y(t), z(t)) \quad \Longrightarrow d \bar{N}\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)=\bar{N}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$
that is, $d N_{p}(v)=-v$ and $d \bar{N}_{p}(v)=v$ for all $p \in S^{2}$ and all $v \in T_{p} S^{2}$.
3. Consider the cylinder $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$. By an argument similar to that of the previous example, we see that $\bar{N}=(x, y, 0)$ and $N=(-x,-y, 0)$ are unit normal vectors at (x, y, z). If $(x(t), y(t), z(t))$ is a parametrized curve in the cylinder, since

$$
(x(t))^{2}+(y(t))^{2}=1 \Longrightarrow 2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)=0
$$

we are able to see that, along this curve,

$$
N(t)=(-x(t),-y(t), 0) \Longrightarrow d N\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)=N^{\prime}(t)=\left(-x^{\prime}(t),-y^{\prime}(t), 0\right)
$$

This implies that if v is a vector tangent to the cylinder and parallel to the z axis and if w is a vector tangent to the cylinder and parallel to the $x y$ plane, then

$$
d N(v)=0=0 v ; \quad d N(w)=-w
$$

It follows that v and w are eigenvectors of $d N$ with eigenvalues 0 and -1 , respectively.
4. Let us analyze the point $p=(0,0,0)$ of the hyperbolic paraboloid $z=y^{2}-x^{2}$. For this, we consider a parametrization $X(u, v)$ given by

$$
X(u, v)=\left(u, v, v^{2}-u^{2}\right),
$$

and compute the normal vector $N(u, v)$. We obtain $X_{u}=(1,0,-2 u), X_{v}=(0,1,2 v)$ and

$$
N=X_{u} \wedge X_{v}=\left(\frac{u}{\sqrt{u^{2}+v^{2}+\frac{1}{4}}}, \frac{-v}{\sqrt{u^{2}+v^{2}+\frac{1}{4}}}, \frac{1}{2 \sqrt{u^{2}+v^{2}+\frac{1}{4}}}\right)
$$

If $\alpha(t)=X(u(t), v(t))$ is a curve with $\alpha(0)=p$ then the tangent vector $\alpha^{\prime}(0)$ has coordinates $\left(u^{\prime}(0), v^{\prime}(0), 0\right)$. Restricting $N(u, v)$ to this curve and computing $N^{\prime}(0)$, we obtain

$$
N^{\prime}(0)=\left(2 u^{\prime}(0),-2 v^{\prime}(0), 0\right),
$$

and therefore, at p,

$$
d N_{p}\left(u^{\prime}(0), v^{\prime}(0), 0\right)=\left(2 u^{\prime}(0),-2 v^{\prime}(0), 0\right)
$$

It follows that the vectors $(1,0,0)$ and $(0,1,0)$ are eigenvectors of $d N_{p}$ with eigenvalues 2 and -2 , respectively.
5. The method of the previous example, applied to the point $p=(0,0,0)$ of the paraboloid $x=x^{2}+k y^{2}, k>0$, shows that the unit vectors of the x axis and the y axis are eigenvectors of $d N_{p}$, with eigenvalues 2 and $2 k$, respectively (assuming that N is pointing outwards from the region bounded by the paraboloid).

Proposition The differential $d N_{p}: T_{p} S \rightarrow T_{p} S$ of the Gauss map is a self-adjoint linear map.
Proof Since $d N_{p}: T_{p} S \rightarrow T_{p} S$ is linear, it suffices to verify that

$$
\left\langle d N_{p}\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, d N_{p}\left(w_{2}\right)\right\rangle \quad \text { for a basis }\left\{w_{1}, w_{2}\right\} \text { of } T_{p} S .
$$

Let $X(u, v)$ be a parametrization of S at p and $\left\{X_{u}, X_{v}\right\}$ the associated basis of $T_{p} S$. If $\alpha(t)=$ $X(u(t), v(t))$ is a parametrized curve in S, with $\alpha(0)=p$, we have

$$
\begin{aligned}
d N_{p}\left(\alpha^{\prime}(0)\right) & =d N_{p}\left(X_{u} u^{\prime}(0)+X_{v} v^{\prime}(0)\right) \\
& =\left.\frac{d}{d t} N(u(t), v(t))\right|_{t=0} \\
& =N_{u} u^{\prime}(0)+N_{v} v^{\prime}(0)
\end{aligned}
$$

in particular, $d N_{p}\left(X_{u}\right)=N_{u}$ and $d N_{p}\left(X_{v}\right)=N_{v}$. Therefore, to prove that $d N_{p}: T_{p} S \rightarrow T_{p} S$ is self-adjoint, it suffices to show that

$$
\left\langle N_{u}, X_{v}\right\rangle=\left\langle d N_{p}\left(X_{u}\right), X_{v}\right\rangle=\left\langle X_{u}, d N_{p}\left(X_{v}\right)\right\rangle=\left\langle X_{u}, N_{v}\right\rangle .
$$

Differentiating the equations $\left\langle N, X_{u}\right\rangle=0$ and $\left\langle N, X_{v}\right\rangle=0$ with respect to v and u, respectively, we get

$$
\begin{aligned}
& \left\langle N_{v}, X_{u}\right\rangle+\left\langle N, X_{u v}\right\rangle=0 \Longrightarrow\left\langle N_{v}, X_{u}\right\rangle=-\left\langle N, X_{u v}\right\rangle \\
& \left\langle N_{u}, X_{v}\right\rangle+\left\langle N, X_{v u}\right\rangle=0 \Longrightarrow\left\langle N_{u}, X_{v}\right\rangle=-\left\langle N, X_{v u}\right\rangle \\
\Longrightarrow & \left\langle N_{v}, X_{u}\right\rangle=-\left\langle N, X_{u v}\right\rangle=\left\langle N_{u}, X_{v}\right\rangle .
\end{aligned}
$$

This proves that $d N_{p}: T_{p} S \rightarrow T_{p} S$ is a self-adjoint linear map.
Remark Let V be a vector space of dimension 2, endowed with an inner product \langle,$\rangle . We say$ that a linear map $A: V \rightarrow V$ is self-adjoint if $\langle A v, w\rangle=\langle v, A w\rangle$ for all $v, w \in V$.
If $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis for V and $\left(\alpha_{i j}\right), i, j=1,2$, is the matrix of A relative to that basis, then

$$
\left\langle A e_{j}, e_{i}\right\rangle=\alpha_{i j}=\left\langle e_{j}, A e_{i}\right\rangle=\alpha_{j i}
$$

that is, the matrix $\left(\alpha_{i j}\right)$ is symmetric.
To each self-adjoint linear map we associate a map $B: V \times V \rightarrow \mathbb{R}$ defined by

$$
B(v, w)=\langle A v, w\rangle \quad \forall v, w \in V
$$

B is clearly bilinear; that is, it is linear in both v and w. Moreover, the fact that A is self-adjoint implies that $B(v, w)=B(w, v)$; that is, B is a bilinear symmetric form in V.
Conversely, if B is a bilinear symmetric form in V, we can define a linear map $A: V \rightarrow V$ by $\langle A v, w\rangle=B(v, w)$ and the symmetry of B implies that A is self-adjoint.
On the other hand, to each symmetric, bilinear form B in V, there corresponds a quadratic form Q in V given by

$$
Q(v)=B(v, v), \quad v \in V
$$

and the knowledge of Q determines B completely, since

$$
B(v, w)=\frac{1}{2}[Q(v+w)-Q(v)-Q(w)]
$$

Thus, a one-to-one correspondence is established between quadratic forms in V and self-adjoint linear maps of V.
The fact that $d N_{p}: T_{p} S \rightarrow T_{p} S$ is a self-adjoint linear map allows us to associate to $d N_{p}$ a quadratic form in $T_{p} S$ defined as follows.
Definition The quadratic form $I I_{p}: T_{p} S \rightarrow \mathbb{R}$, defined by

$$
I I_{p}(v)=-\left\langle d N_{p}(v), v\right\rangle, \quad v \in T_{p} S,
$$

is called the second fundamental form of S at p.
Definition Let C be a regular curve in S passing through $p \in S, k$ the curvature of C at p, and $\cos \theta=\langle n, N\rangle$, where n is the normal vector to C and N is the normal vector to S at p. The number $k_{n}=k \cos \theta$ is then called the normal curvature of $C \subset S$ at p.
In other words, k_{n} is the length of the projection of the vector $k n$ over the normal to the surface at p, with a sign given by the orientation N of S at p.

Remarks

- The normal curvature of C does not depend on the orientation of C but changes sign with a change of orientation for the surface.
- Let $v \in T_{p} S$ be a unit tangent vector to S at p, and let $C \subset S$ be a regular curve parametrized by $\alpha(s): I \rightarrow S$, where s is the arc length of C, and with $\alpha(0)=p, \alpha^{\prime}(0)=v$. Let $N(s)=N \circ \alpha(s)$ be the restriction of the normal vector N to the curve $\alpha(s)$. For all $s \in I$, since
$\left\langle N(s), \alpha^{\prime}(s)\right\rangle=0 \Longrightarrow\left\langle N^{\prime}(s), \alpha^{\prime}(s)\right\rangle+\left\langle N(s), \alpha^{\prime \prime}(s)\right\rangle=0 \Longrightarrow-\left\langle N^{\prime}(s), \alpha^{\prime}(s)\right\rangle=\left\langle N(s), \alpha^{\prime \prime}(s)\right\rangle$,
we have

$$
\begin{aligned}
I I_{p}\left(\alpha^{\prime}(0)\right) & =-\left\langle d N_{p}\left(\alpha^{\prime}(0)\right), \alpha^{\prime}(0)\right\rangle=-\left\langle d N_{p}\left(-\alpha^{\prime}(0)\right),-\alpha^{\prime}(0)\right\rangle=I I_{p}\left(-\alpha^{\prime}(0)\right) \\
& =-\left\langle N^{\prime}(0), \alpha^{\prime}(0)\right\rangle=\left\langle N(0), \alpha^{\prime \prime}(0)\right\rangle \\
& =\langle N(p), k n(p)\rangle \stackrel{(*)}{=} k_{n}(p) \Longrightarrow k_{n}(p) \text { depends only on } v=\alpha^{\prime}(0) \text { and } I I_{p}
\end{aligned}
$$

that is, the value of the second fundamental form $I I_{p}$ for a unit vector $v \in T_{p} S$ is equal to the normal curvature of a regular curve passing through p and tangent to v. In particular, we obtained the following result.

Proposition (Meusnier) All curves lying on a surface S and having at a given point $p \in S$ the same tangent line have at this point the same normal curvatures.
Remark Given a unit vector $v \in T_{p} S$, the intersection of S with the plane containing v and $N(p)$ is called the normal section of S at p along v. In a neighborhood of p, a normal section of S at p is a regular plane curve on S whose normal vector

$$
n(p)= \pm N(p) \text { or } 0 \text { (a zero vector when } k=0 \text {); }
$$

and, by $(*), k(p)=\left|k_{n}(p)\right|$. With this terminology, the above proposition says that the absolute value of the normal curvature at p of a curve $\alpha(s)$ is equal to the curvature of the normal section of S at p along $\alpha^{\prime}(0)$.

C and C_{n} have the same normal curvature at p along v.

Examples

1. Let S be the surface of revolution obtained by rotating the curve $z=y^{4}$, parametrized by $\alpha(t)=\left(0, t, t^{4}\right), t \in \mathbb{R}$, about the z axis and let $p=\alpha(0)=(0,0,0) \in S$. Since

- $k(p)=\frac{\left|\alpha^{\prime}(0) \times \alpha^{\prime \prime}(0)\right|}{\left|\alpha^{\prime}(0)\right|^{3}}=0$,
- $T_{p} S=\left\{(x, y, 0) \mid(x, y) \in \mathbb{R}^{2}\right\}$, the $x y$ plane,
$\Longrightarrow N(p) / /(0,0,1)$, i.e. the normal vector $N(p)$ is parallel to the z axis,
and any normal section at p is obtained from the curve $z=y^{4}$ by rotation; hence, it has curvature zero. It follows that all normal curvatures are zero at p, and thus $d N_{p}=0$.

2. - Let $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a x+b y+c z+d=0\right\}$ be a plane in \mathbb{R}^{3}. Since all normal sections are straight lines, all normal curvatures are zero. Thus, the second fundamental form is identically zero at all points. This agrees with the fact that $d N_{p}=0$ for all $p \in S$.

- Let $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ with N as orientation, the normal sections through a point $p \in S^{2}$ are circles with radius 1 . Thus, all normal curvatures are equal to 1 , and the second fundamental form is $I I_{p}(v)=1$ for all $p \in S^{2}$ and all $v \in T_{p} S^{2}$ with $|v|=1$.
- Let $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$ be a cylinder in \mathbb{R}^{3}. Since the normal sections at a point p vary from a circle perpendicular to the axis of the cylinder to a straight line parallel to the axis of the cylinder, passing through a family of ellipses, the normal curvatures varies from 1 to 0 . It is not hard to see geometrically that 1 is the maximum and 0 is the minimum of the normal curvature at p.

Lemma If the function $Q(x, y)=a x^{2}+2 b x y+c y^{2}$, restricted to the unit circle $x^{2}+y^{2}=1$, has a maximum at the point $(1,0)$, then $b=0$.
Proof Parametrize the circl $x^{2}+y^{2}=1$ by $x=\cos t, y=\sin t, t \in(-\varepsilon, 2 \pi+\varepsilon)$. Thus, $t=0$ is an interior point of $(-\varepsilon, 2 \pi+\varepsilon)$, and Q, restricted to that circle, becomes a function of t :

$$
Q(t)=a \cos ^{2} t+2 b \cos t \sin t+c \sin ^{2} t, \quad t \in(-\varepsilon, 2 \pi+\varepsilon)
$$

Since Q has a maximum at the interior point $(1,0)$ we have

$$
\left(\frac{d Q}{d t}\right)_{t=0}=2 b=0
$$

Hence, $b=0$ as we wished.
Proposition Given a quadratic form Q in V, there exists an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of V such that if $v \in V$ is given by $v=x e_{1}+y e_{2}$, then

$$
Q(v)=\lambda_{1} x^{2}+\lambda_{2} y^{2}
$$

where λ_{1} and λ_{2} are the maximum and minimum, repectively, of Q on the unit circle $|v|=1$.
Proof Let λ_{1} be the maximum of Q on the unit circle $|v|=1$, and let e_{1} be a unit vector with $\max _{|v|=1} Q(v)=Q\left(e_{1}\right)=\lambda_{1}$. Such an e_{1} exists by continuity of Q on the compact set $|v|=1$. Let e_{2} be a unit vector that is orthogonal to e_{1}, and set $\lambda_{2}=Q\left(e_{2}\right)$. We shall show that the basis $\left\{e_{1}, e_{2}\right\}$ satisfies the conditions of the proposition.
Let B be the symmetric bilinear form that is associated to Q and set $v=x e_{1}+y e_{2}$. Then

$$
Q(v)=B(v, v)=B\left(x e_{1}+y e_{2}, x e_{1}+y e_{2}\right)=\lambda_{1} x^{2}+2 b x y+\lambda_{2} y^{2}, \quad \text { where } b=B\left(e_{1}, e_{2}\right)
$$

By the lemma, $b=B\left(e_{1}, e_{2}\right)=0$, and thus $Q(v)=\lambda_{1} x^{2}+\lambda_{2} y^{2}$, for $v=x e_{1}+y e_{2} \in V$.
Furthermore, for any $v=x e_{1}+y e_{2}$ with $x^{2}+y^{2}=1$, since $\lambda_{1}=\max _{|v|=1} Q(v) \geq Q\left(e_{2}\right)=\lambda_{2}$,

$$
Q(v)=\lambda_{1} x^{2}+\lambda_{2} y^{2} \geq \lambda_{2}\left(x^{2}+y^{2}\right)=\lambda_{2}=Q\left(e_{2}\right) \Longrightarrow \lambda_{2}=\min _{|v|=1} Q(v)
$$

Since
Theorem Let $A: V \rightarrow V$ be a self-adjoint linear map. Then there exists an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of V such that $A\left(e_{1}\right)=\lambda_{1} e_{1}, A\left(e_{2}\right)=\lambda_{2} e_{2}$ (that is, e_{1} and e_{2} are eigenvectors and λ_{1}, λ_{2} are eigenvalues of A). In the basis $\left\{e_{1}, e_{2}\right\}$, the matrix of A is clearly diagonal and the elements $\lambda_{1}, \lambda_{2}, \lambda_{1} \geq \lambda_{2}$, on the diagonal are the maximum and the minimum, respectively, of the quadratic form $Q(v)=\langle A v, v\rangle$, on the unit circle of V.
Proof Consider the quadratic form $Q(v)=\langle A v, v\rangle$. By proposition above, there exists an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of V such that

$$
Q\left(e_{1}\right)=\lambda_{1}=\max _{|v|=1 \mid} Q(v) \geq \min _{|v|=1 \mid} Q(v)=\lambda_{2}=Q\left(e_{2}\right)
$$

By setting $A e_{1}=\alpha_{11} e_{1}+\alpha_{21} e_{2}$ and $A e_{2}=\alpha_{12} e_{1}+\alpha_{22} e_{2}$, since

$$
\alpha_{11}=\left\langle A e_{1}, e_{1}\right\rangle=Q\left(e_{1}\right)=\lambda_{1} \quad \text { and } \quad \alpha_{21}=\left\langle A e_{1}, e_{2}\right\rangle=B\left(e_{1}, e_{2}\right)=0 \Longrightarrow A e_{1}=\lambda_{1} e_{1},
$$

and since

$$
\alpha_{12}=\left\langle A e_{2}, e_{1}\right\rangle=B\left(e_{2}, e_{1}\right)=0 \quad \text { and } \quad \alpha_{22}=\left\langle A e_{2}, e_{2}\right\rangle=Q\left(e_{2}\right)=\lambda_{2} \Longrightarrow A e_{2}=\lambda_{2} e_{2},
$$

and in the basis $\left\{e_{1}, e_{2}\right\}$, the matrix of A is $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$.
Remark For each $p \in S$ there exists an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ of $T_{p} S$ such that
$d N_{p}\left(e_{1}\right)=-k_{1} e_{1}$ and $d N_{p}\left(e_{2}\right)=-k_{2} e_{2}, \quad$ where $k_{1}=\max _{v \in T_{p} S,|v|=1} I I_{p}(v)$ and $k_{2}=\min _{v \in T_{p} S,|v|=1} I I_{p}(v)$.
Definition The maximum normal curvature k_{1} and the minimum normal curvature k_{2} are called the principal curvatures at p; the corresponding directions, that is, the directions given by the eigenvectors e_{1}, e_{2}, are called principal directions at p.
Definition If a regular connected curve C on S is such that for all $p \in C$ the tangent line of C is a principal direction at p, then C is called a line of curvature of S.
Proposition (Olinde Rodrigues) A necessary and sufficient condition for a connected regular curve C on S to be a line of curvature of S is that

$$
N^{\prime}(t)=\lambda(t) \alpha^{\prime}(t),
$$

for any parametrization $\alpha(t)$ of C, where $N(t)=N \circ \alpha(t)$ and $\lambda(t)$ is a differentiable function of t. In this case, $-\lambda(t)$ is the (principal) curvature along $\alpha^{\prime}(t)$.
Proof It suffices to observe that if $\alpha^{\prime}(t)$ is contained in a principal direction, then $\alpha^{\prime}(t)$ is an eigenvector of $d N$ and

$$
N^{\prime}(t)=d N\left(\alpha^{\prime}(t)\right)=\lambda(t) \alpha^{\prime}(t)
$$

The converse is immediate (since $d N\left(\alpha^{\prime}(t)\right)=N^{\prime}(t)=\lambda(t) \alpha^{\prime}(t)$).
Remark For $p \in S$, let $\left\{e_{1}, e_{2}\right\}$ be the principal directions at p such that

$$
d N_{p}\left(e_{1}\right)=-k_{1} e_{1} \text { and } d N_{p}\left(e_{2}\right)=-k_{2} e_{2},
$$

where $k_{1}=\max _{v \in T_{p} S,|v|=1} I I_{p}(v), k_{2}=\min _{v \in T_{p} S,|v|=1} I I_{p}(v)$ are the principal curvatures at p. For each unit vector $v \in T_{p} S$, since $\left\{e_{1}, e_{2}\right\}$ forms an orthonormal basis of $T_{p} S$, we have

$$
v=e_{1} \cos \theta+e_{2} \sin \theta,
$$

where θ is the angle from e_{1} to v in the orientation of $T_{p} S$. The normal curvature k_{n} along v is given by

$$
\begin{aligned}
k_{n} & =I I_{p}(v)=-\left\langle d N_{p}(v), v\right\rangle \\
& =-\left\langle d N_{p}\left(e_{1} \cos \theta+e_{2} \sin \theta\right), e_{1} \cos \theta+e_{2} \sin \theta\right\rangle \\
& =\left\langle e_{1} k_{1} \cos \theta+e_{2} k_{2} \sin \theta, e_{1} \cos \theta+e_{2} \sin \theta\right\rangle \\
& =k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta .
\end{aligned}
$$

The last expression is known classically as the Euler formula; actually, it is just the expression of the second fundamental form in the basis $\left\{e_{1}, e_{2}\right\}$.

Given a linear map $A: V \rightarrow V$ of a vector space of dimension 2 and given a basis $\left\{v_{1}, v_{2}\right\}$ of V, we recall that

$$
\text { determinant of } A=a_{11} a_{22}-a_{12} a_{22}, \quad \text { trace of } A=\frac{a_{11}+a_{22}}{2}
$$

where $\left(a_{i j}\right)$ is the matrix of A in the basis $\left\{v_{1}, v_{2}\right\}$. It is known that these numbers do not depend on the choice of the basis $\left\{v_{1}, v_{2}\right\}$ and are, therefore, attached to the linear map A.
Definition Let $p \in S$ and let $d N_{p}: T_{p} S \rightarrow T_{p} S$ be the differential of the Gauss map. Then the determinant of $d N_{p}$ is called the Gaussian curvature K of S at p, and the negative of half of the trace of $d N_{p}$ is called the mean curvature H of S at p.
In terms of the principal curvatures we can write

$$
K=\operatorname{det} d N_{p}=\left|\begin{array}{cc}
-k_{1} & 0 \\
0 & -k_{2}
\end{array}\right|=\operatorname{det}\left(-d N_{p}\right)=k_{1} k_{2}, \quad H=\operatorname{tr}\left(-d N_{p}\right)=\operatorname{tr}\left(\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right)=\frac{k_{1}+k_{2}}{2} .
$$

Definition A point p of a surface S is called

1. elliptic if $\operatorname{det} d N_{p}>0$, e.g. points of a sphere $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$ and the point $p=(0,0,0)$ of the paraboloid $z=x^{2}+k y^{2}, k>0$.
2. hyperbolic if $\operatorname{det} d N_{p}<0$, e.g. the point $p=(0,0,0)$ of the hyperbolic paraboloid $z=y^{2}-x^{2}$.
3. parabolic if $\operatorname{det} d N_{p}=0$, with $d N_{p} \neq 0$, e.g. points of a cylinder $(x-a)^{2}+(y-b)^{2}=r^{2}$.
4. planar if $d N_{p}=0$, e.g. points of a plane $a x+b y+c z+d=0$.

It is clear that this classification does not depend on the choice of the orientation.
Definition A point $p \in S$ is called an umbilical point of S if $k_{1}=k_{2}$.
Observe that all points of a plane ($k_{1}=k_{2}=0$) are (planar) umbilical points, and all points of a sphere of radius $r\left(k_{1}=k_{2}=\frac{1}{r}\right)$ or the point $p=(0,0,0)$ of the paraboloid $z=x^{2}+y^{2}$ ($k_{1}=k_{2}=2$) are (nonplanar) umbilical points.
It is an interesting fact that the only surfaces made up entirely of umbilical points are essentially spheres and planes.
Proposition If all points of a connected surface S are umbilical points, then S is either contained in a sphere or in a plane.
Proof Let $p \in S$ and let $X(u, v)$ be a parametrization of S at p such that the coordinate $V=X(U) \subset S$ is connected. Since each $q \in V$ is an umbilical point, there exists a differentiable function $\lambda: V \rightarrow \mathbb{R}$ such that

$$
\begin{array}{ll}
& d N_{q}(w)=\lambda(q) w \quad \forall q \in V, \forall w=a_{1} X_{u}+a_{2} X_{v} \in T_{q} S \\
\Longleftrightarrow \quad & N_{u} a_{1}+N_{v} a_{2}=\lambda(q)\left(a_{1} X_{u}+a_{2} X_{v}\right) \quad \forall a_{1}, a_{2} \in \mathbb{R} \\
\Longrightarrow \quad & N_{u}=\lambda(q) X_{u} \quad \text { and } \quad N_{v}=\lambda(q) X_{v} .
\end{array}
$$

Differentiating the first equation in v and the second one in u and subtracting the resulting equations, we obtain

$$
\lambda_{v}(q) X_{u}-\lambda_{u}(q) X_{v}=0
$$

Since X_{u} and X_{v} are linearly independent, we have

$$
\lambda_{u}(q)=\lambda_{v}(q)=0 \quad \forall q \in V
$$

Also since V is connected, $\lambda(q)=\lambda$ (a constant) for all $q \in V=X(U) \subset S$.
If $\lambda=0$, then $N_{u}(q)=N_{v}(q)=0$ for all $q \in V$ and therefore $N(q)=N_{0}$ (a constant vector) for all $q \in V$. Thus

$$
\left\langle X(u, v), N_{0}\right\rangle_{u}=\left\langle X(u, v), N_{0}\right\rangle_{v}=0 \quad \forall(u, v) \in U .
$$

Since $U \subset \mathbb{R}^{2}$ is connected, we have

$$
\left\langle X(u, v), N_{0}\right\rangle=d(\text { a constant }) \quad \forall(u, v) \in U
$$

and all points $X(u, v)$ of V belong to a plane.
If $\lambda \neq 0$, since $N_{u}=\lambda X_{u}, N_{v}=\lambda X_{v}$, we have

$$
\left(X(u, v)-\frac{1}{\lambda} N(u, v)\right)_{u}=\left(X(u, v)-\frac{1}{\lambda} N(u, v)\right)_{v}=0 \quad \forall(u, v) \in U .
$$

Thus there exists a fixed point $Y \in \mathbb{R}^{3}$ such that

$$
X(u, v)-\frac{1}{\lambda} N(u, v)=Y \quad \forall(u, v) \in U \Longrightarrow \left\lvert\,\left(X(u, v)-\left.Y\right|^{2}=\frac{1}{\lambda^{2}}|N|^{2}=\frac{1}{\lambda^{2}} \quad \forall(u, v) \in U .\right.\right.
$$

Hence all points of $V=X(U)$ are contained in a sphere of center Y and radius $\frac{1}{|\lambda|}$.
Furthermore, observe that if $V=X(U)$ and $W=\bar{X}(\bar{U})$ are connected coordinate neighborhoods of $p=X\left(u_{0}, v_{0}\right)=\bar{X}\left(\bar{u}_{0}, \bar{v}_{0}\right) \in S$, then $V=X(U)$ and $W=\bar{X}(\bar{U})$ are contained in the same plane or in the same sphere by the continuity. This proves that if all points of a connected surface S are umbilical points, then S is either contained in a sphere or in a plane.

The Gauss Map in Local Coordinates

Let $X(u, v)$ be a parametrization at a point $p \in S$ of a surface S, and let $\alpha(t)=X(u(t), v(t))$ be a parametrized curve on S, with $\alpha(0)=p$. To simplify the notation, we shall make the convention that all functions to appear below denote their values at the point p.
The tangent vector to $\alpha(t)$ at $p \alpha^{\prime}=X_{u} u^{\prime}+X_{v} v^{\prime}$ and

$$
d N\left(\alpha^{\prime}\right)=\frac{d}{d t} N(u(t), v(t))=N_{u} u^{\prime}+N_{v} v^{\prime}
$$

Since $N=\frac{X_{u} \wedge X_{v}}{\left|X_{u} \wedge X_{v}\right|}, N_{u}, N_{v} \in T_{p} S$, in basis $\left\{X_{u}, X_{v}\right\}$ we may write

$$
(*)\left\{\begin{array}{l}
N_{u}=a_{11} X_{u}+a_{21} X_{v} \\
N_{v}=a_{12} X_{u}+a_{22} X_{v}
\end{array}\right.
$$

and therefore,

$$
d N\left(\alpha^{\prime}\right)=\left(a_{11} u^{\prime}+a_{12} v^{\prime}\right) X_{u}+\left(a_{21} u^{\prime}+a_{22} v^{\prime}\right) X_{v} ;
$$

hence,

$$
d N\binom{u^{\prime}}{v^{\prime}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{u^{\prime}}{v^{\prime}} .
$$

This shows that in the basis $\left\{X_{u}, X_{v}\right\}, d N$ is given by the matrix $\left(a_{i j}\right), i, j=1,2$. Notice that this matrix is not necessarily symmetric, unless $\left\{X_{u}, X_{v}\right\}$ is an orthonormal basis.

On the other hand, the expression of the second fundamental form in the basis $\left\{X_{u}, X_{v}\right\}$ is given by

$$
\begin{aligned}
I I_{p}\left(\alpha^{\prime}\right) & =-\left\langle d N\left(\alpha^{\prime}\right), \alpha^{\prime}\right\rangle=-\left\langle N_{u} u^{\prime}+N_{v} v^{\prime}, X_{u} u^{\prime}+X_{v} v^{\prime}\right\rangle \\
& =e\left(u^{\prime}\right)^{2}+2 f u^{\prime} v^{\prime}+g\left(v^{\prime}\right)^{2},
\end{aligned}
$$

where, since $\left\langle N, X_{u}\right\rangle=\left\langle N, X_{v}\right\rangle=0$,

$$
\begin{aligned}
& e=-\left\langle N_{u}, X_{u}\right\rangle=\left\langle N, X_{u u}\right\rangle, \\
& f=-\left\langle N_{v}, X_{u}\right\rangle=\left\langle N, X_{u v}\right\rangle=\left\langle N, X_{v u}\right\rangle=-\left\langle N_{u}, X_{v}\right\rangle, \\
& g=-\left\langle N_{v}, X_{v}\right\rangle=\left\langle N, X_{v v}\right\rangle .
\end{aligned}
$$

We shall now obtain the values of $a_{i j}$ in terms of the coefficients e, f, g. We shall now obtain the values of aij in terms of the coefficients e, f, g. From equations $(*)$ for N_{u}, N_{v}, we have

$$
\begin{aligned}
&-f=-\left\langle N_{u}, X_{v}\right\rangle=a_{11} F+a_{21} G, \\
&-f=-\left\langle N_{v}, X_{u}\right\rangle=a_{12} E+a_{22} G, \\
&-e=-\left\langle N_{u}, X_{u}\right\rangle=a_{11} E+a_{21} F, \\
&-g=-\left\langle N_{v}, X_{v}\right\rangle=a_{12} F+a_{22} G .
\end{aligned}
$$

where E, F and G are the coefficients of the first fundamental form in the basis $\left\{X_{u}, X_{v}\right\}$. In matrix form, we have

$$
-\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) \Longleftrightarrow\left(\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right)=-\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}
$$

and thus

$$
\left(\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right)=\frac{-1}{E G-F^{2}}\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\left(\begin{array}{rr}
G & -F \\
-F & E
\end{array}\right)=\frac{-1}{E G-F^{2}}\left(\begin{array}{rl}
e G-f F & -e F+f E \\
f G-g F & -f F+g E
\end{array}\right) .
$$

Note that the Equations $(*)$, with $\left(a_{i j}\right)$ defined in (\dagger), are nonlinear partial differential equations of $2^{\text {nd }}$ order for $X=X(u, v)$, called the equations of Weingarten.
From Eq. (\dagger), we immediately obtain the Gaussian curvature

$$
K(p)=\operatorname{det}\left(-d N_{p}\right)=\operatorname{det}\left(a_{i j}\right)=\frac{e g-f^{2}}{E G-F^{2}} .
$$

To compute the mean curvature, we recall that $-k_{1},-k_{2}$ are the eigenvalues of $d N$ Therefore, k_{1} and k_{2} satisfy the equation

$$
d N(v)=-k v=-k I v \quad \text { for some } v \in T_{p} S, v \neq 0
$$

where I is the identity map. It follows that the linear map $d N+k I$ is not invertible; hence, it has zero determinant. Thus,

$$
\operatorname{det}\left(\begin{array}{cc}
a_{11}+k & a_{12} \\
a_{21} & a_{22}+k
\end{array}\right)=0 \Longleftrightarrow k^{2}+\left(a_{11}+a_{22}\right) k+\left(a_{11} a_{22}-a_{12} a_{21}\right)=0
$$

Since k_{1} and k_{2} are the roots of the above quadratic equation, we conclude that

$$
H=\frac{1}{2}\left(k_{1}+k_{2}\right)=-\frac{1}{2}\left(a_{11}+a_{22}\right)=\frac{1}{2} \frac{e G-2 f F+g E}{E G-F^{2}} ;
$$

hence,

$$
k^{2}-2 H k+K=0 \Longleftrightarrow k=H \pm \sqrt{H^{2}-K}
$$

From this relation, it follows that if we choose $k_{1}(q) \geq k_{2}(q), q \in S$, then the functions k_{1} and k_{2} are continuous in S. Moreover, k_{1} and k_{2} are differentiable in S, except perhaps at the umbilical points $\left(H^{2}=K\right)$ of S.

Examples

1. Let U be an open subset of \mathbb{R}^{2} and let S be the graph of a differentiable function $z=h(x, y)$, $(x, y) \in U$. Then S is parametrized by

$$
X(x, y)=(x, y, h(x, y)), \quad(x, y) \in U
$$

A simple computation shows that

$$
K=\frac{h_{x x} h_{y y}-h_{x y}^{2}}{\left(1+h_{x}^{2}+h_{y}^{2}\right)^{2}}, \quad 2 H=\frac{\left(1+h_{x}^{2}\right) h_{y y}-2 h_{x} h_{y} h_{x y}+\left(1+h_{y}^{2}\right) h_{x x}}{\left(1+h_{x}^{2}+h_{y}^{2}\right)^{3 / 2}}
$$

2. Consider a surface of revolution parametrized by

$$
X(u, v)=(\varphi(v) \cos u, \varphi(v) \sin u, \psi(v)) \quad 0<u<2 \pi, a<v<b, \varphi(v) \neq 0
$$

The coefficients of the first fundamental form are given by

$$
E=\varphi^{2}, \quad F=0, \quad G=\left(\varphi^{\prime}\right)^{2}+\left(\psi^{\prime}\right)^{2}
$$

It is convenient to assume that the rotating curve is parametrized by arc length, that is, that

$$
\left(\varphi^{\prime}\right)^{2}+\left(\psi^{\prime}\right)^{2}=G=1
$$

The computation of the coefficients of the second fundamental form is straightforward and yields

$$
\begin{aligned}
& e=\frac{\left(X_{u}, X_{v}, X_{u u}\right)}{\sqrt{E G-F^{2}}}=\frac{1}{\sqrt{E G-F^{2}}}\left|\begin{array}{ccc}
-\varphi \sin u & \varphi \cos u & 0 \\
\varphi^{\prime} \cos u & \varphi^{\prime} \sin u & \psi^{\prime} \\
-\varphi \cos u & -\varphi \sin u & 0
\end{array}\right|=-\varphi \psi^{\prime} \\
& f=\frac{\left(X_{u}, X_{v}, X_{u v}\right)}{\sqrt{E G-F^{2}}}=\frac{1}{\sqrt{E G-F^{2}}}\left|\begin{array}{ccc}
-\varphi \sin u & \varphi \cos u & 0 \\
\varphi^{\prime} \cos u & \varphi^{\prime} \sin u & \psi^{\prime} \\
-\varphi^{\prime} \sin u & \varphi^{\prime} \cos u & 0
\end{array}\right|=0 \\
& g=\frac{\left(X_{u}, X_{v}, X_{v v}\right)}{\sqrt{E G-F^{2}}}=\frac{1}{\sqrt{E G-F^{2}}}\left|\begin{array}{ccc}
-\varphi \sin u & \varphi \cos u & 0 \\
\varphi^{\prime} \cos u & \varphi^{\prime} \sin u & \psi^{\prime} \\
\varphi^{\prime \prime} \cos u & \varphi^{\prime \prime} \sin u & \psi^{\prime \prime}
\end{array}\right|=\psi^{\prime} \varphi^{\prime \prime}-\psi^{\prime \prime} \varphi^{\prime}
\end{aligned}
$$

Since $F=f=0$, we conclude that the parallels ($v=$ const.) and the meridians ($u=$ const.) of a surface of revolution are lines of curvature of such a surface.
Because

$$
K=\frac{e g-f^{2}}{E G-F^{2}}=-\frac{\psi^{\prime}\left(\psi^{\prime} \varphi^{\prime \prime}-\psi^{\prime \prime} \varphi^{\prime}\right)}{\varphi}
$$

and φ is always positive, it follows that the parabolic points are given by either $\psi^{\prime}=0$ (the tangent line to the generator curve is perpendicular to the axis of rotation) or $\psi^{\prime} \varphi^{\prime \prime}-\psi^{\prime \prime} \varphi^{\prime}=0$
(the curvature of the generator curve is zero). A point which satisfies both conditions is a planar point, since these conditions imply that $e=f=g=0$.
It is convenient to put the Gaussian curvature in still another form. By differentiating $\left(\varphi^{\prime}\right)^{2}+\left(\psi^{\prime}\right)^{2}=1$ we obtain $\varphi^{\prime} \varphi^{\prime \prime}=-\psi^{\prime} \psi^{\prime \prime}$. Thus

$$
K=-\frac{\psi^{\prime}\left(\psi^{\prime} \varphi^{\prime \prime}-\psi^{\prime \prime} \varphi^{\prime}\right)}{\varphi}=-\frac{\left(\psi^{\prime}\right)^{2} \varphi^{\prime \prime}+\left(\varphi^{\prime}\right)^{2} \varphi^{\prime \prime}}{\varphi}=-\frac{\varphi^{\prime \prime}}{\varphi} .
$$

3. Let $a>r>0$, and consider the parametrization

$$
X(u, v)=((r \cos u+a) \cos v,(r \cos u+a) \sin v, r \sin u), \quad 0<u<2 \pi, 0<v<2 \pi
$$

of the torus generated by rotating $S^{1}=\left\{(y, z) \mid(y-a)^{2}+z^{2}=r^{2}\right\}$ about z-axis. Since

$$
\begin{aligned}
X_{u} & =(-r \sin u \cos v,-r \sin u \sin v, r \cos u) \\
X_{v} & =(-(r \cos u+a) \sin v,(r \cos u+a) \cos v, 0) \\
X_{u u} & =(-r \cos u \cos v,-r \cos u \sin v,-r \sin u) \\
X_{u v} & =(r \sin u \sin v,-r \sin u \cos v, 0) \\
X_{v v} & =(-(r \cos u+a) \cos v,-(r \cos u+a) \sin v, 0),
\end{aligned}
$$

we obtain $X_{u} \wedge X_{v}=(-r \cos u(r \cos u+a) \cos v,-r \cos u(r \cos u+a) \sin v,-r \sin u(r \cos u+a))$,

$$
E=\left\langle X_{u}, X_{u}\right\rangle=r^{2}, \quad F=\left\langle X_{u}, X_{v}\right\rangle=0, \quad G=\left\langle X_{v}, X_{v}\right\rangle=(r \cos u+a)^{2},
$$

$\left|X_{u} \wedge X_{v}\right|=\sqrt{E G-F^{2}}=r(r \cos u+a)$, and

$$
\begin{aligned}
& e=\left\langle N, X_{u u}\right\rangle=\left\langle\frac{X_{u} \wedge X_{v}}{\left|x_{u} \wedge X_{v}\right|}, X_{u u}\right\rangle=\frac{\left\langle X_{u} \wedge X_{v}, X_{u u}\right\rangle}{\sqrt{E G-F^{2}}}=\frac{r^{2}(r \cos u+a)}{r(r \cos u+a)}=r \\
& f=\left\langle N, X_{u v}\right\rangle=\left\langle\frac{X_{u} \wedge X_{v}}{\left|x_{u} \wedge X_{v}\right|}, X_{u v}\right\rangle=\frac{\left\langle X_{u} \wedge X_{v}, X_{u v}\right\rangle}{\sqrt{E G-F^{2}}}=0 \\
& g=\left\langle N, X_{v v}\right\rangle=\left\langle\frac{X_{u} \wedge X_{v}}{\left|x_{u} \wedge X_{v}\right|}, X_{v v}\right\rangle=\frac{\left\langle X_{u} \wedge X_{v}, X_{v v}\right\rangle}{\sqrt{E G-F^{2}}}=\frac{r \cos u(r \cos u+a)^{2}}{r(r \cos u+a)}=\cos u(r \cos u+a),
\end{aligned}
$$

and $K=\frac{e g-f^{2}}{E G-F^{2}}=\frac{\cos u}{r(r \cos u+a)}$. Note that $K=0$ when $u=\pi / 2$ or $u=3 \pi / 2$, the points of such parallels are parabolic points; $K<0$ when $\pi / 2<u<3 \pi / 2$, the points in this region are hyperbolic points; and $K>0$ when $0<u<\pi / 2$, or $3 \pi / 2<u<2 \pi$, the points in this region are elliptic points.

Proposition Let $p \in S$ be an elliptic point of a surface S. Then there exists a neighborhood V of p in S such that all points in V belong to the same side of the tangent plane $T_{p} S$. Let $p \in S$ be a hyperbolic point. Then in each neighborhood of p there exist points of S in both sides of $T_{p} S$.
Proof Let $X(u, v)$ be a parametrization of S at p, with $X(0,0)=p$, and let $d: X(U) \rightarrow \mathbb{R}$ be a function defined by

$$
d(q)=\langle X(u, v)-X(0,0), N(p)\rangle, \quad \text { for } q=X(u, v) \in X(U)
$$

Since $X(u, v)$ is differentiable and by the Taylor's formula, we have

$$
X(u, v)=X(0,0)+X_{u}(0,0) u+X_{v}(0,0) v+\frac{1}{2}\left(X_{u u}(0,0) u^{2}+2 X_{u v}(0,0) u v+X_{v v}(0,0) v^{2}\right)+\bar{R}
$$

where the remainder \bar{R} satisfies that

$$
\lim _{(u, v) \rightarrow(0,0)} \frac{\bar{R}}{u^{2}+v^{2}}=0
$$

It follows that $\left\langle X_{u}(0,0), N(p)\right\rangle=\left\langle X_{v}(0,0), N(p)\right\rangle=0$ and

$$
\begin{aligned}
d(q) & =\langle X(u, v)-X(0,0), N(p)\rangle \\
& =\frac{1}{2}\left\{\left\langle X_{u u}(0,0), N(p)\right\rangle u^{2}+2\left\langle X_{u v}(0,0), N(p)\right\rangle u v+\left\langle X_{v v}(0,0), N(p)\right\rangle v^{2}\right\}+\langle\bar{R}, N(p)\rangle \\
& =\frac{1}{2}\left\{e u^{2}+2 f u v+g v^{2}\right\}+\langle\bar{R}, N(p)\rangle \\
& =\frac{1}{2} I I_{p}(w)+\langle\bar{R}, N(p)\rangle,
\end{aligned}
$$

where $w=X_{u}(0,0) u+X_{v}(0,0) v \in T_{p} S$ and $\lim _{(u, v) \rightarrow(0,0)} \frac{\langle\bar{R}, N(p)\rangle}{u^{2}+v^{2}}=0$.
For an elliptic point $p, K(p)>0$, so the principal curvatures k_{1}, k_{2} have the same sign and thus $I I_{p}(w)=k_{n}$ has a fixed sign for all $w \in T_{p} S$ satisfying $|w|=1$ (by the Euler formula). Therefore, for all (u, v) sufficiently near p, d has the same sign as $I I_{p}(w)$; that is, all such (u, v) belong to the same side of $T_{p} S$.
For a hyperbolic point $p, K(p)<0$, so the principal curvatures k_{1}, k_{2} have the opposite signs, and in each neighborhood of p there exist points (u, v) and (\bar{u}, \bar{v}) such that $I I_{p}(w /|w|)=k_{1}$
and $I I_{p}(\bar{w} /|\bar{w}|)=k_{2}$ have opposite signs (here $w=X_{u}(0,0) u+X_{v}(0,0) v$ and $\bar{w}=X_{u}(0,0) \bar{u}+$ $X_{v}(0,0) \bar{v}$ are principal directions); such points belong therefore to distinct sides of $T_{p} S$.
Proposition Let p be a point of a surface S such that the Gaussian curvature $K(p) \neq 0$, and let V be a connected neighborhood of p where K does not change sign. Then

$$
K(p)=\lim _{A \rightarrow 0} \frac{A^{\prime}}{A},
$$

where

- A is the area of a a region $B \subset V$ containing p,
- A^{\prime} is the area of the region $N(B)$ in \mathbb{S}^{2},
and the limit is taken through a sequence of regions B_{n} that converges to p, in the sense that any sphere around p conatins all B_{n}, for n sufficiently large.
Proof Suppose $K>0$ in V. Let $X: U \rightarrow S$ be a parametrization of S at p such that $V \subset X(U)$ and let $B=X(R)$. Since

$$
A=\iint_{R}\left|X_{u} \wedge X_{v}\right| d u d v, \quad \text { and } \quad A^{\prime}=\iint_{R}\left|N_{u} \wedge N_{v}\right| d u d v=\iint_{R} K\left|X_{u} \wedge X_{v}\right| d u d v,
$$

we have

$$
\lim _{A \rightarrow 0} \frac{A^{\prime}}{A}=\lim _{A \rightarrow 0} \frac{A^{\prime} / A(R)}{A / A(R)}=\frac{\lim _{A(R) \rightarrow 0} \frac{1}{A(R)} \iint_{R} K\left|X_{u} \wedge X_{v}\right| d u d v}{\lim _{A(R) \rightarrow 0} \frac{1}{A(R)} \iint_{R}\left|X_{u} \wedge X_{v}\right| d u d v}=\frac{K\left|X_{u} \wedge X_{v}\right|}{\left|x_{u} \wedge X_{v}\right|}=K(p) .
$$

Remark In the proof, we have used the following Theorems from Advanced Calculus.

- Change of Variables Theorem Let $F: U \rightarrow V$ be a diffeomorphism between open subsets of $U, V \subset \mathbb{R}^{n}$, let $D^{*} \subset U$ and $D=F\left(D^{*}\right) \subset V$ be bounded subsets, and let $f: D \rightarrow \mathbb{R}$ be a bounded function. Then

$$
\begin{aligned}
\int_{D} f\left(y_{1}, \ldots, y_{n}\right) d y_{1} \cdots d y_{n} & =\int_{D^{*}} f\left(F\left(x_{1}, \ldots, x_{n}\right)\right)\left|\operatorname{det} D F\left(x_{1}, \ldots, x_{n}\right)\right| d x_{1} \cdots d x_{n} \\
& =\int_{D^{*}} f\left(F\left(x_{1}, \ldots, x_{n}\right)\right)\left|\frac{\partial\left(y_{1}, \ldots, y_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}\right| d x_{1} \cdots d x_{n}
\end{aligned}
$$

- Theorem Let $f: B_{r}(p) \rightarrow \mathbb{R}$ be a function defined on the ball $B_{r}(p) \subset \mathbb{R}^{n}$ of radius r and center p. If f is continuous at p, then
$\lim _{\rho \rightarrow 0} \frac{1}{V\left(B_{\rho}(p)\right)} \int_{B_{\rho}(p)} f(x) d x=f(p), \quad$ where $V\left(B_{\rho}(p)\right)=\int_{B_{\rho}(p)} d x=$ the volume of $B_{\rho}(p)$.
Proof Since

$$
f(p)=f(p) \cdot \frac{1}{V\left(B_{\rho}(p)\right)} \int_{B_{\rho}(p)} d x=\frac{1}{V\left(B_{\rho}(p)\right)} \int_{B_{\rho}(p)} f(p) d x \quad \text { and } \quad \lim _{x \rightarrow p} f(x)=f(p)
$$

we have for any $\varepsilon>0$, there is a $\delta>0$ such that if $x \in B_{\delta}(p)$ then $|f(x)-f(p)|<\varepsilon$, so for all $0<\rho<\delta$, we have

$$
\begin{aligned}
\left|\lim _{\rho \rightarrow 0} \frac{1}{V\left(B_{\rho}(p)\right)} \int_{B_{\rho}(p)} f(x) d x-f(p)\right| & =\left|\lim _{\rho \rightarrow 0} \frac{1}{V\left(B_{\rho}(p)\right)} \int_{B_{\rho}(p)}[f(x)-f(p)] d x\right| \\
& \leq \lim _{\rho \rightarrow 0} \frac{1}{V\left(B_{\rho}(p)\right)} \int_{B_{\rho}(p)}|f(x)-f(p)| d x \\
& <\lim _{\rho \rightarrow 0} \frac{1}{V\left(B_{\rho}(p)\right)} \int_{B_{\rho}(p)} \varepsilon d x \\
& =\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we have

$$
\lim _{\rho \rightarrow 0} \frac{1}{V\left(B_{\rho}(p)\right)} \int_{B_{\rho}(p)} f(x) d x=f(p) .
$$

